國立彰化師範大學105學年度第2學期學士班轉學生招生考試試題

年級:____ 系所:<u>數學系</u>

科目: 微積分

☆☆請在答案紙上作答☆☆

共1頁,第1頁

- 1. Prove, by $\varepsilon \delta$ limit definition, $\lim_{x \to 2} \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{2}}$.(10%)
- 2. (a) Show that $f(x) = x\sqrt{x^4 + 2}$ is one to one on $(-\infty, \infty)$.(5%)
 - (b) Find $(f^{-1})'(\sqrt{3}).(5\%)$
- 3. Evaluate the following limits: You need to show your processes of getting answers.(30%)
- (a) $\lim_{x\to\infty} \sqrt{4x^2 + 2x} 2x$ (b) $\lim_{x\to0} \frac{\sin x^2}{x}$ (c) $\lim_{x\to0} \frac{x \sin x}{6x^3}$ (d) $\lim_{x\to\infty} e^{-x} \sqrt{x}$ (e) $\lim_{x\to\infty} (1 + \frac{1}{x})^x$.
- (f) $\lim_{x\to 0^+} (4x)^{\sqrt{x}}$
- 4. Find the following indefinite integrals: (20%)
- (a) $\int \frac{\sqrt[3]{x}}{\sqrt[3]{x}-1} dx$ (b) $\int e^{\sqrt{x}} dx$.
- 5. Determine whether the following series converges or diverges. Show your answer.
 - $(1) \sum_{n=1}^{\infty} n \left(\sin \frac{1}{n^4} \right)$ (5%)
- (2) $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt[3]{n} + n^3}$

- 6. Evaluate $\int_{0}^{2} (\int_{v}^{2} e^{-x^{2}} dx) dy$. (10%)
- 7. Use Green's Theorem to evaluate the line integral (10%)

$$\int_{C} y^{3} dx + (3x^{2})$$

where C is the path from (0,0) to (1,1) along the graph of $y = x^3$ and from (1,1) to (0,0) along the graph of y = x.