國立彰化師範大學107學年度第2學期學士班轉學生招生考試試題

系所: <u>數學系</u> 年級: <u>二</u> 組別: <u>不分組</u>

科目: 微積分

☆☆請在答案紙上作答☆☆

共1頁,第1頁

- **1.** (12%) Prove, by the ε - δ limit definition, $\lim_{x\to 2} \frac{1}{x} = \frac{1}{2}$.
- **2.** (10%) Find all inflection points of the function $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$.
- **3.** (20%) Evaluate the following limits:

You need to show your processes of getting answers.

- (a) $\lim_{x \to \infty} \left(1 \frac{1}{x} \right)^x$ (b) $\lim_{x \to 0^+} x^{\sqrt{x}}$ (c) $\lim_{x \to 0} \frac{\tan(\sin^{-1} x)}{\sin(\tan^{-1}(3x))}$ (d) $\lim_{x \to 0} x \sin\left(\frac{2}{x}\right)$
- **4.** (20%) Find the following indefinite integrals:

(a)
$$\int \left(x^e + e^x + \frac{x}{e} + \frac{e}{x} + e\right) dx$$
 (b) $\int \frac{1}{x\sqrt{\ln x}} dx$

(c) $\int e^{\sqrt{x}} dx$

- (d) $\int \cos^2(3x) dx$
- **5.** (10%) Determine whether the following series converges or diverges. Show your answer.

(a)
$$\sum_{n=1}^{\infty} n \sin\left(\frac{1}{n^3}\right)$$
 (b) $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt[4]{2n} + n^3}$.

- **6.** (10%) Evaluate the iterated integral $\int_0^2 \left(\int_y^2 e^{-x^2} dx \right) dy$.
- 7. (12%) Use Green's Theorem to evaluate the line integral

$$\int_C y^3 \, dx + (x^3 + 3xy^2) \, dy,$$

where C is the path from (0,0) to (1,1) along the graph of $y = x^3$ and from (1,1) to (0,0) along the graph of y = x.

8. (6%) Find the directional derivative of $f(x,y) = e^{xy^2}$ at (3,-1) in the direction $v = \left(\frac{3}{5}, \frac{4}{5}\right)$.