國立彰化師範大學105學年度第2學期學士班轉學生招生考試試題

系所: <u>數學系</u> 年級: ____

科目: 線性代數

☆☆請在答案紙上作答☆☆

共1頁,第1頁

- (20%) 1. Determine whether the linear transformation T: $R^3 \to R^3$ defined by T([x, y, z]) = [x y + 3z, x + y + z, x] is invertible. If yes, find a formula for its inverse.
 - 2. Let V and V' be vector spaces with ordered bases $B = (1, x, x^2 x)$ and $B' = (1, \cos x, \sin x)$ respectively. Let $T: V \to V'$ be the linear transformation such that $T(1) = 1 + 2\cos x 3\sin x$, $T(x) = 3 + 5\cos x + 2\sin x$, $T(x^2 x) = -2 3\cos x 4\sin x$.
- (10%) (a) Find the matrix representation A of T relative to the ordered bases B and B'.
- (10%) (b) Use A to find $T(v)_{B'}$ if $v = 2 5x + x^2$.
- (10%) (c) Show that T is invertible and find the matrix representation of T^{-1} relative to B' and B.
- (20%) 3. Find an orthonormal basis for the subspace $W = \{ [x_1, x_2, x_3, x_4] \in R^4 \mid 2x_1 3x_3 + x_4 = 0, 3x_1 + 4x_2 + 2x_3 + 2x_4 = 0 \}.$
- (20%) 4. Compute A^{50} , where A is a matrix given by $\begin{bmatrix} 1 & 2 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}.$$

(10%) 5. Show that $\operatorname{sp}(v_1, v_2) = \operatorname{sp}(2v_1 + v_2, v_1 - 3v_2)$, where $v_1, v_2 \in R^3$ and $\operatorname{sp}(v_1, v_2)$ denotes the set of all linear combinations of v_1 and v_2 .