國立彰化師範大學112學年度碩士班招生考試試題

系所: 數學系(選考丙)、

統計資訊研究所(選考丙)

☆☆請在答案紙上作答☆☆

共1頁,第1頁

科目: 微積分

(A) Suppose f is a function defined on an open interval containing c.

(10%)

State the definition of $\lim_{x \to c} f(x) = b$.

- (B) Apply the above definition to prove $\lim_{x\to 2} \frac{1}{x} = \frac{1}{2}$
- Find the following limits, if they exist:

(10%)

- (A) $\lim_{x \to 1} \frac{x^{10} 1}{x^5 1}$ (B) $\lim_{x \to 0^+} \frac{e^{-1/\sin x}}{x^2}$ (C) $\lim_{x \to 0} (\cos 2x)^{\frac{1}{x^2}}$ (D) $\lim_{x \to 0} \arctan(\frac{1}{x})$

For the function $f(x) = xe^{-x^2}$, find:

(10%)

- (A) all intervals where its graph is increasing or decreasing
- (B) all intervals where its graph concaves upward or downward
- (C) all local maxima and minima
- (D) all inflection points
- Find the following integrals:

(10%)

(A) $\int_0^{\frac{1}{2}} x^2 \arcsin x \ dx$

- (B) $\int \frac{x^3 + 7x 13}{(x^2 + 4)(x 1)} dx$.
- It is well known that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$. Find $\int_{-\infty}^{\infty} (x-2)^2 e^{-4x^2} dx$. (10%)
- Find the sum of the series $\sum_{n=1}^{\infty} \frac{n^2}{\epsilon n}$

(10%)

- Find the maximum and minimum values of $f(x, y, z) = x^3y^2z$ on the ball
- (10%)

 $x^2 + y^2 + z^2 \le 6$.

Evaluate the double integral $\iint_T (x-y)^2 dxdy$ over the triangle T with vertices

(10%)

(0,0), (4,0) and (2,2).

Evaluate the surface integral $\iint_T z \, dS$ where T is the first-octant portion of the plane (10%)

x + y + z = 1.

10. Evaluate the triple integral $\iiint_B (\sin(z) + xyz + z^2) dV$ where B is the ball given by (10%)

 $x^2 + y^2 + z^2 \le 1$.