國立彰化師範大學109學年度碩士班招生考試試題

系所:統計資訊研究所(選考乙)

科目:____統計學___

共2頁,第1頁

☆☆請在答案紙上作答☆☆

1. Let the random variable *X* have the probability mass function (pmf)

$$f(x) = \frac{(|x|+1)^2}{9}, \ x = -1, 0, 1.$$

(1) Compute the values of the mean, variance and standard deviation of X. (8%)

ī

(2) Find the moment-generating function of X. (5%)

- (3) Compute $E[2X^2 3X + 9]$. (5%)
- (4) Compute Var $\left(-\frac{x}{5} 7\right)$. (5%)
- 2. A small convenience store has two checkout stations. Suppose that the joint probability mass function of the random variables X = number of customers at station 1 and Y = number of customers at station 2 is shown in the table.

			У	
	f(x,y)	0	1	2
	0	.3	.08	.02
Х	1	.08	.2	.05
	2	.02	.05	.2

- (1) Find the marginal probability mass function of X. (3%)
- (2) Compute the conditional probability P(Y > 0.5 | X = 2). (3%)
- (3) Compute the conditional expected value E(Y|X = 1). (6%)
- (4) Compute the covariance and correlation between X and Y. (12%)
- (5) Are X and Y independent? Why or why not? (3%)

3. Please prove the following questions.

(1) Let U_1, \dots, U_n be i.i.d. random samples from $U(-\theta, \theta)$ and $Y = \max(|U_1|, \dots, |U_n|)$, please prove that $Y \xrightarrow{p} \theta$ when $n \to \infty.(10\%)$

(2) Let U_1, \dots, U_n be i.i.d. random samples from U(0,1) and $Z = \prod_{i=1}^n U_i$, please prove that $Z \xrightarrow{p} 0$ when $n \to \infty.(10\%)$

國立彰化師範大學109學年度 <u>碩士班</u> 招生考試試題					
系所: <u>統計資訊研究所(選考乙)</u>	科目:統計學				
☆☆請在答案紙上作答☆☆	共2頁,第2頁				
4. Let X_1, \ldots, X_n be i.i.d. random samples from a normal distribution,	$N(\mu,\sigma^2)$, where μ and σ^2				
are unknown. Please find the					
(1) method of moment estimator (MME) of (μ, σ^2) . (10%)					
(2) maximum likelihood estimator (MLE) of (μ, σ^2) .(10%)					
(3) minimal sufficient statistic for (μ, σ^2) .(10%)					